

Studies for the development and understanding of heterogeneous photocatalysts

Prof. Dr. Jennifer Strunk

Leibniz Institute for Catalysis (LIKAT) at the University of Rostock, Germany

Photocatalytic processes that use only (sun)light as energy source are nowadays in development for a number of applications, ranging from water treatment¹ over selective oxidations to the generation of industrial resources from CO_2 and H_2O . In spite of decades of research, however, little systematic insight into reaction mechanisms or the nature of catalytic active sites has been obtained. This hinders reaction engineering and material science approaches to optimize the process and the photocatalysts, respectively. While such studies are already challenging in classical catalysis, an additional level of complexity is added in photocatalysis due to the dependence of reaction rates on the light intensity and the challenge to establish reproducible reaction conditions.² In this contribution, two successful examples for such systematic studies under controlled reaction conditions will be highlighted.

In studies of photocatalytic CO₂ reduction on TiO₂ under controlled reaction conditions CH₄, CO and H₂ are detected as main products. A variation of the reaction conditions in a continuous-flow reactor revealed that CH₄ yield is maximized under low CO₂ and H₂O concentrations below ~1vol%. Physisorbed H₂O is sufficient to carry out the reaction (Figure 1). The CH₄ yield shows a square-root dependence on the light intensity, indicating a major influence of charge carrier recombination. Elevated temperature (60°C) increases the CH₄ yield.^{3,4}

Supported vanadium oxides with structures ranging from isolated sites to nanoparticles were used for the selective oxidation of CH_3OH to H_2CO . While all vanadium oxide species can carry out the reaction thermally catalyzed, only isolated sites and oligomers can carry out the photoreaction, i.e. nanoparticles are inactive (Fig. 2). Isolated vanadium oxide sites on silica display an exclusive H_2CO selectivity in the photoreaction at room temperature, but H_2CO desorption is rate-limiting. Changes in photoreactivity are attributed to the quantum size effect.⁵

Figure 1: Influence of reaction conditions in CO₂ reduction.

Figure 2: V/SiO₂ in CH₃OH oxidation to H₂CO.

References

- [1] M.N. Chong, B. Jin, C.W.K. Chow, and C. Saint, Water Research, 2010, 44, 2997.
- [2]. N.G. Moustakas and J. Strunk, Chem. Eur. J., 10.1002/chem.201706178.
- [3] M. Dilla, R. Schlögl, and J. Strunk, ChemCatChem, 2017, 9, 696.
- [4] M. Dilla, A. Mateblowski, S. Ristig, and J. Strunk, ChemCatChem, 2017, 9, 4345.
- [5] B. Kortewille, I.E. Wachs, N. Cibura, O. Pfingsten, et al., ChemCatChem, 10.1002/cctc.201800311.

Curriculum Vitae - Prof. Jennifer Strunk

Academic Education

2008	PhD in Industrial Chemistry, Ruhr University Bochum (with M. Muhler)
2004	Diploma in Chemistry, Major: Industrial Chemistry, Ruhr-University Bochum, Germany
Profession	
since 2017	Head of the department Photocatalysis, Leibniz Institut für Katalyse e.V., Rostock, Germany
2014 - 2016	Research Group Leader at the MPI for Chemical Energy Conversion, Mülheim/Ruhr, Germany
2010 - 2014	BMBF Junior Research Group Leader, Industrial Chemistry, Ruhr-University Bochum
2008 - 2010	Postdoctoral research at University of California, Berkeley / Lawrence Berkeley National Laboratory, CA, USA (with A.T. Bell)
Awards and oth	ner activities
2015	Two months research stay on "In situ Raman Spectroscopy" with Israel E. Wachs, Lehigh University, Bethlehem, PA, USA
2014	Jochen-Block-Preis of the German Catalysis Society e.V. (GeCatS)
2013	Selected as participant for the 63 rd Lindau Nobel Laureate Meeting

since 2013 Member of the "Deutsche Bunsengesellschaft"

2011 - 2012	Awarded to be Member of the "Global Young Faculty",
	Mercator Research Center Ruhr

- since 2011 Member of GeCatS, DECHEMA, GDCh
- since 2008 Member of the American Chemical Society (ACS)
- 2006 2007 PhD fellowship from the Heinrich-Böll-Stiftung